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Abstract—Large Language Models (LLMs) are rapidly trans-
forming document understanding by enabling automated extrac-
tion of structured data from unstructured sources like resumes
and transcripts. Despite high accuracy and efficiency gains,
LLMs suffer from a critical limitation: they may hallucinate
plausible but incorrect outputs yet provide no explicit confidence
measure, undermining reliability in high-stakes domains such as
admissions and hiring. This paper presents a practical verification
technique for LLM-based entity extraction pipelines, leveraging
embedding vector classification to estimate the confidence of each
output. We conducted a comparative study of confidence esti-
mation techniques, including LLM self-critique and embedding-
based approaches, on a public resume dataset with synthesized
extraction errors. Our findings indicate that embedding-based
verification more accurately distinguishes correct from erroneous
extractions (F1-score of 0.98), enabling selective flagging of
low-confidence fields for human-in-the-loop review. This work
advances the adoption of LLMs in sensitive document workflows
by providing a scalable, reliable confidence framework.

Index Terms—Large Language Models, Document Extrac-
tion, Confidence Estimation, Hallucination Detection, Embedding
Classification, Explainable AI, Human-in-the-Loop, Fairness,
Trustworthy AI

I. INTRODUCTION

Large Language Models (LLMs) such as GPT-4 have shown
strong capabilities in extracting structured information from
unstructured documents, enabling rapid automation [1]. These
advances offer transformative potential in domains such as
education admissions and hiring, where hundreds or thousands
of personal documents must be reviewed efficiently. LLM-
based extractors have achieved high accuracy and speed,
exceeding traditional rule-based approaches.

However, deploying LLMs in sensitive workflows intro-
duces new risks. LLMs can generate hallucinated or subtly
incorrect outputs that seem plausible but are not supported by
the source data [2]. Critically, most LLM APIs do not provide
a confidence score for their predictions [3], leaving human
reviewers without a clear signal about which extractions might
be erroneous. In high-stakes settings, such undetected errors
can propagate bias and lead to unfair or even legally prob-
lematic decisions [4], [5]. Specific to the domain of EdTech,
a misread GPA or job title can impact an applicant’s ranking
during an automated application process. Recent research and

policy guidance highlight the importance of explainable and
trustworthy AI in these contexts.

This paper addresses the challenge of confidence estimation
for LLM-based document extraction. We focus on entity ex-
traction from personal documents, scenarios where reliability
and fairness are paramount. Our main contribution is a novel
confidence estimation method that uses classification of token
embedding vectors extracted from the LLM when prompted
to self-critique, enabling selective human-in-the-loop review
of low-confidence outputs. We compare different variations
of this method to the commonly employed naive self-critique
approach using text output from the LLM, which has high
positive bias. We demonstrate that embedding classification
has superior accuracy and efficiency, especially in practical
real-world usage scenarios.

II. RELATED WORK

A. LLMs for Document Entity Extraction

LLMs have demonstrated remarkable performance on entity
extraction tasks from unstructured text, including domains
such as education and recruitment [1]. Modern models can
parse documents like resumes and application essays, reducing
manual effort and expediting decisions. For instance, recent
studies found that LLMs could extract data up to 50× faster
than human annotators with over 90% accuracy on certain
fields [1]. These successes have led to their increasing adoption
in real-world admission and hiring workflows.

B. Challenges: Hallucinations and Lack of Confidence Signals

Despite their promise, LLMs pose reliability challenges.
A key issue is hallucination: the generation of incorrect,
fabricated information [2], [6]. Ji et al. [5] and others note that
LLMs ”frequently generate plausible-sounding but factually
incorrect information,” which may go undetected by human
reviewers at scale. Subtle semantic errors, such as misinterpret-
ing a degree title or work experience, are particularly difficult
to catch.

Another limitation is the absence of explicit confidence
signals. Unlike traditional machine learning models, which can
return probability scores or uncertainty estimates, most LLM
APIs only output text [3]. Empirical work from Amazon [3]
demonstrates that LLM internal log-probabilities are poorly
calibrated: even subtly incorrect answers may be assigned high979-8-3315-9170-0/25/$31.00 ©2025 IEEE



likelihood, making raw probabilities an unreliable signal for
downstream error detection.

These limitations are especially problematic in high-stakes
applications. In education and hiring, extraction mistakes may
propagate bias and unfairness. Studies on AI in admissions
have found that opaque, black-box models can inadvertently
reinforce societal inequities, such as favoring applicants from
wealthier backgrounds [4], [7]. In hiring, resume screeners
trained on biased data have been shown to filter out qualified
candidates from marginalized groups [7]. The need for trans-
parent, contestable, and fair AI has thus become a focus in
recent literature and policy [4], [7].

C. Approaches to Output Verification and Confidence Estima-
tion

To mitigate these challenges, a variety of verification and
confidence estimation techniques have been proposed:

1) Logit-Based Confidence Scores: Some works attempt
to use the LLM’s own token probabilities (e.g., mean log-
probability or entropy) as a proxy for confidence [2], [8].
In theory, a correctly extracted field should consist of high-
probability tokens, whereas a hallucination might contain
unexpected tokens with lower probability. However, these
internal scores are not reliably correlated with correctness;
hallucinated outputs often still receive high probabilities [8]–
[10]. Thus, logit-based methods alone are insufficient for
robust error detection.

2) LLM Self-Assessment and Critique: Kadavath et al. [6]
and Tian et al. [9] introduced self-reflection techniques,
prompting the model to rate its own confidence or explain its
answer. Chain-of-thought plus self-rating prompts improved
calibration over raw logits, but models can still remain over-
confident, especially when unaware of their own mistakes [11].
Chain-of-verification frameworks (CoVe) extend this further
by having the LLM generate and check sub-queries, or by
using a second ”critic” model for internal review [11]. While
these methods catch some errors, they increase computational
cost and are not foolproof.

3) Consistency Checks via Multiple Sampling: SelfCheck-
GPT and related methods generate multiple outputs for a
prompt, flagging answers as hallucinated if the responses dis-
agree [2]. While effective for some classes of errors, this ”self-
consistency” approach is computationally expensive, increases
latency, and does not always detect systematic mistakes,
especially if the model consistently makes the same error.

4) Embedding-Based Confidence Scores: A more scal-
able solution is embedding-based verification, as proposed in
CheckEmbed [10]. Here, both the LLM output and source
context are encoded as semantic embeddings, and their simi-
larity (e.g., cosine similarity) is used as a confidence signal.
This approach is model-agnostic, efficient, and interpretable.
Studies have found that embedding similarity can reliably dis-
tinguish correct from hallucinated or semantically faulty out-
puts in both entity extraction and text-to-SQL generation [3].
Embedding methods support quantitative thresholds and can
be used for real-time, high-throughput verification [3]. Recent

research has expanded these ideas, applying embedding-based
confidence estimation to a variety of generation tasks. For
example, INSIDE [12] leverages internal semantic states of
LLMs for hallucination detection, while CED [13] utilizes
differences between embedding vectors to identify unfaithful
model outputs. Additionally, hierarchical approaches such as
the Hierarchical Semantic Piece method [14] use entity-level
embedding similarity to improve factual verification in com-
plex documents. Collectively, these techniques demonstrate
that embedding-based verification is a robust and adaptable
framework for confidence estimation across diverse NLP tasks.

D. Fairness, Explainability, and Human-in-the-Loop

Recent literature highlights the importance of integrating
output verification and confidence estimation not just for
technical performance, but also for fairness and trust [4],
[7], [15]. Providing explicit confidence signals allows for
selective human review, helping to prevent ”silent” errors
from influencing outcomes, particularly for underrepresented
groups or atypical data [15]. Explainable AI (XAI) frameworks
increasingly emphasize not only transparency but also the im-
portance of contestability, ensuring that users can understand
and challenge automated decisions [16].

We believe embedding-based confidence estimation aligns
with these principles: it enables interpretable, auditable deci-
sions (e.g., by flagging low-confidence extractions), provides
transparency to end-users, and supports selective deployment
of human oversight in a cost-effective manner.

E. Research Gap

While recent advances in embedding-based confidence es-
timation have shown promise for LLM-based pipelines [10],
[12]–[14], most existing approaches share two key limitations.
First, most methods use vector similarity metrics and fixed
thresholds to distinguish correct from incorrect extractions,
which can be brittle and difficult to calibrate for diverse
document types or extraction fields. Second, the vast majority
of commercial embedding models operate at the sequence
level, by mean-pooling all token embeddings of the full
context, potentially obscuring token-level signals that could
be an indicator of subtle errors.

This work builds on these insights by systematically eval-
uating three confidence estimation strategies (self-critique,
sequence-level embedding and token-level embedding) on a
real-world entity extraction task. We focus on the practical
deployment of an embedding-based confidence classification
model, showing its effectiveness for selectively flagging low-
confidence extractions for human review and enabling calibra-
tion for trust in sensitive domains.

III. METHODS

A. Dataset and Preprocessing

We evaluated our confidence estimation techniques using
a public resume corpus dataset with an IT employment fo-
cus [17]. To ensure computational feasibility, we restricted our



analysis to the 10,000 shortest resumes from the dataset. This
filtering reduced the maximum character count per resume
to 4,096 characters, with full input prompts under 2,048
tokens maximum. For embedding, it is important that the full
document context fits within the context window and is not
truncated.

The task focused on job title extraction verification, where
each resume was paired with a finite list of 10 potential job
titles to create a binary classification problem. Ground truth
positive samples consisted of job titles that were correctly
extracted from the resumes, while synthetic negative samples
were generated by systematically pairing each resume with
the job titles not present in the resume. Additionally, missing
job titles (represented as ”null”) were included as negative
samples, reflecting the realistic scenario where extraction
algorithms may fail to identify any job title. This approach
resulted in a dataset of 110,000 resume-job title pairs with an
approximately 85% negative class distribution.

B. Model Architecture and Hardware

All experiments were conducted using the open-weight
Gemma 3 4b instruction tuned model in 4-bit quantized format
(Q4 K M.gguf) [18], running on commercial-grade NVIDIA
GeForce RTX 3090 GPUs. Gemma 3 was selected for its
balance of performance and size, making it a practical choice
for real-world deployment. The model was configured with
a maximum context length of 2,048 tokens to accommodate
the filtered resume dataset while maintaining computational
efficiency. Embedding extraction and inference procedures
were implemented using the llama-cpp-python library for
efficient GPU utilization. Average embedding inference time
was kept below one second per sample with this experimental
setup.

As a comparison, we also tested the open-weight Qwen 3
4b embedding model (unquantized) [19], running on the same
hardware using the sentence-transformers library. This model
uses a decoder-only architecture but has been specifically
trained for embedding extraction rather than text generation.
We excluded reasoning-enhanced models from the compari-
son due to latency constraints, as our goal was to maintain
comparable inference speed across all approaches.

C. Prompt Engineering

We developed a standardized prompt template to ensure
consistency across all three confidence estimation techniques:

An applicant provided the following resume:
{resume_text}

Extracted data field definitions:
- job_title: The title of a position the applicant
listed on their resume

Note that ’null’ means that the field could not be extracted.

Verify if the extracted field is correct (True)
or incorrect (False):
job_title = {job_title}

Correct = ?

The model configuration and input prompts were kept
identical across all experimental conditions to ensure fair
comparison between techniques.

D. Confidence Estimation Techniques

1) LLM Self-Critique Baseline: The baseline approach
leveraged the language model’s inherent ability to assess its
own outputs. The Gemma 3 model was prompted to generate
a single token response (True or False) indicating whether the
extracted job title was correct. To encourage binary output, we
applied logit bias during inference, constraining the model to
select only from the target tokens. Inference was performed at
temperature T=1.0.

2) Sequence Embedding Classification: This approach ex-
tracted dense vector representations from the language model
hidden state and used them to train a classifier. For each
prompt, we computed a normalized embedding vector for the
full input sequence of tokens. These 2,560-dimensional vectors
served as input features for an XGBoost binary classifier.
XGBoost was selected for its excellent performance on non-
linear data. We implemented two variants:

i. Mean-Pooled Tokens: Mean-pooled vectors from all to-
ken positions [Gemma 3]

ii. End-of-Sequence Token: Embedding vector from only the
final EOS token position [Qwen 3]

3) Last-N Token Embedding Classification: Building on the
previous approach, this technique concentrated on embeddings
for the last tokens in the prompt only. These 2,560-dimensional
vectors were extracted from the hidden state of the Gemma 3
model. In contrast to Qwen 3 embedding, the Gemma 3 model
has no EOS token, so the last tokens are not specifically trained
to summarize the full context. We implemented two variants:

i. Single Last Token (N=1): Embedding vector from only
the last token position (”?”) [Gemma 3]

ii. Multiple Last Tokens (N=3): Mean-pooled vector from
the last three token positions (”Correct = ?”) [Gemma 3]

These last token embeddings were hypothesized to contain
more task-relevant information, which would be a lower noise
signal for confidence estimation compared to full prompt
sequence representations. By extracting the end tokens, as
opposed to intermediate tokens, all prior relevant context has
the opportunity to be accumulated in the token embedding
vectors due to the uni-directional nature of the attention
mechanism in the decoder-only Gemma 3 LLM.

E. Training and Evaluation Protocol

We followed standard machine learning practices with strat-
ified data splits, first dividing the data 90%/10% for training
and testing, then performing an 80%/20% cross-validation split
within the training set for hyperparameter optimization and
early stopping. The XGBoost models were trained using GPU-
accelerated tree-based methods with comprehensive hyperpa-
rameter optimization and early stopping to prevent overfitting.
Random search was performed over learning rates, maximum
depths, subsample ratios, and regularization parameters, with



cross-validation on the training set to select optimal configu-
rations and early stopping based on validation loss.

Model performance was assessed using standard binary
classification metrics including accuracy, precision, recall,
specificity, and F1-score. These metrics provide comprehen-
sive insight into each technique’s ability to distinguish between
correct and incorrect extractions across varying classification
thresholds.

IV. RESULTS

We evaluated three techniques for confidence estimation in
document extraction: naive LLM self-critique with True/False
output, XGBoost binary classification using full sequence
embeddings, and XGBoost binary classification using last
token embeddings. The evaluation was conducted on the test
set comprising 11,000 samples (10% of the total dataset)
across two experimental conditions: the original training data
distribution with 85% error rate, and a simulated scenario
with 5% error rate to reflect real-world LLM entity extraction
accuracy.

A. Standard Evaluation Metrics

Table I presents the performance metrics for all approaches
evaluated on the test set using the original training data
distribution (85% negative, 15% positive samples) with a 0.50
classification threshold.

TABLE I: Classification performance metrics on standard test
set with 85% error rate

LLM Self Mean EOS Last 3 Last 1
Metric Critique Pooled Token Token Token
Accuracy 0.263 0.835 0.961 0.966 0.968
Precision 0.161 0.392 0.868 0.852 0.880
Recall 0.949 0.217 0.863 0.928 0.905
Specificity 0.144 0.942 0.977 0.972 0.979
F1-Score 0.275 0.279 0.866 0.888 0.892
Threshold - 0.50 0.50 0.50 0.50

The results demonstrate a clear performance hierarchy.
The naive LLM self-critique approach exhibited poor over-
all performance with low specificity (14.4%) and precision
(16.1%), despite achieving high recall (94.9%). This indicates
a tendency to over-classify samples as positive, resulting in nu-
merous false positives. The mean-pooled embedding approach
achieved substantially improved specificity (94.2%), but suf-
fered from low recall (21.7%), suggesting more conservative
behavior resulting in an excess of false negatives. The Qwen
3 embedding model (EOS token approach) demonstrated
substantial improvement, as expected due to its embedding
training objective, achieving 86.3% recall and 86.6% F1-
score. The two last-N token embedding methods delivered
high performance across all metrics, achieving up to 88.0%
precision, 92.8% recall, and a maximum F1-score of 89.2%.

B. Real-World Performance Simulation

To better reflect practical deployment scenarios where LLM
extraction errors are rare, we simulated a real-world distribu-
tion by randomly sampling 5% negative samples alongside all

positive samples. Classification thresholds were optimized on
the training data to maximize F1-score under this distribution,
yielding optimal thresholds ranging from 0.28 to 0.68.

TABLE II: Classification performance metrics on adjusted test
set with simulated 5% error rate

LLM Self Mean EOS Last 3 Last 1
Metric Critique Pooled Token Token Token
Accuracy 0.908 0.524 0.858 0.954 0.886
Precision 0.954 0.976 1.000 0.999 1.000
Recall 0.949 0.512 0.850 0.952 0.880
Specificity 0.129 0.765 1.000 0.988 1.000
F1-Score 0.951 0.672 0.919 0.975 0.936
Threshold - 0.28 0.56 0.28 0.68

Under the simulated real-world conditions, the perfor-
mance patterns shifted notably. The LLM self-critique method
achieved high precision and recall due to the favorable class
distribution, resulting in an F1-score of 95.1%. However,
the extremely low specificity (12.9%) indicates persistent
false positive issues. The mean-pooled embedding approach
achieved high precision (97.6%) but suffered from low recall
(51.2%), limiting its practical utility and automation rate.
The EOS token approach achieved balanced performance with
91.9% F1-score, while acheiving perfect precision (100%).
The last-3 token embedding method demonstrated exceptional
performance with 99.9% precision, 95.2% recall, and 98.8%
specificity, achieving an F1-score of 97.5%. Notably, the last-
1 token variation suffered from reduced recall (88.0%) under
the same conditions, resulting in an approximately 4% lower
F1-score.

C. Embedding Space Analysis
To understand the underlying representational differences

between the embedding approaches, we performed UMAP
dimensionality reduction and visualization of the embedding
spaces under the simulated 5% error rate condition.

Figure 1 reveals distinct characteristics of the sequence ver-
sus last token embedding techniques. The sequence embedding
spaces (top plots) demonstrate a large spread and overlap
between positive and negative samples. This overlap corre-
sponds to the observed classification challenges and reduced
recall performance. In contrast, the last-N token embedding
spaces (bottom plots) exhibits markedly superior class sepa-
ration, with positive and negative samples forming distinct,
well-separated clusters. This clear geometric separation in
the embedding space directly correlates with the superior
classification performance observed across all metrics.

The visualization provides insight into why the last-3 token
approach outperforms the other embedding approaches: by
focusing on the last tokens of the input sequence, this method
captures richer, more discriminative features for confidence
estimation, resulting in an embedding space where classes are
more linearly separable.

V. DISCUSSION

Our evaluation highlights clear distinctions between the ver-
ification strategies under study, both in terms of performance
and practical deployment considerations.



(a) Mean-pooled embedding (b) EOS token embedding

(c) Last-3 token embedding (d) Last-1 token embedding

Fig. 1: UMAP 2D visualization of embedding spaces with
5% error rate. Sequence embeddings (a,b) exhibit poor class
separation while last token embeddings (c,d) show superior
class clustering and separation.

The experimental results demonstrate that embedding-based
approaches significantly outperform naive LLM self-critique
for confidence estimation in document extraction tasks. Specif-
ically, the last-N token embedding method emerges as the
most effective approach, achieving superior performance in
both training and simulated real-world conditions. The UMAP
visualizations provide compelling evidence that this perfor-
mance advantage stems from better learned representations
that exhibit clearer class separation in the embedding space.

A. LLM Critique: Limitations and Real-World Implications

The LLM self-critique method, in which a secondary LLM
is prompted to assess the correctness of outputs, yielded the
weakest results among the tested approaches. Under sim-
ulated real-world conditions with 5% extraction error rate,
the high F1-score (95%) may suggest high performance but
the extremely low specificity (13%) reveals that almost all
errors are being passed through as correct. This matches
findings from other work [11] that indicate LLMs tend towards
overconfidence. In practical terms, relying on this method
may not show significant difference over simply assuming
all extractions are correct, hence jeopardizing trust in the
reliability of the automated extraction pipeline when errors
do inevitably occur.

While prompt engineering or model fine-tuning may yield
marginal gains, our objective was to evaluate verification
strategies ”out of the box”, without relying on extensive model
adjustments. This is consistent with prior literature [6], [9],
[11], which also aims to deploy LLMs without extensive
custom fine-tuning for specific tasks, and is more in line with
how companies currently use LLMs in production. Ultimately,
our results reinforce the view that relying solely on the model’s
own self-critique is inadequate for document processing, es-
pecially when missed errors carry significant risk.

The embedding-based approaches also offer more granular
control by providing numerical confidence scores. For in-
stance, the threshold applied to classifier outputs can be tuned
to prioritize precision or recall, making the system more or
less conservative depending on operational risk tolerance.

B. Cost, Latency, and Practicality

Beyond accuracy, inference cost and system response time
are critical considerations for large-scale deployment in pro-
duction. LLM-based verification (especially multi-step cri-
tique) is typically more computationally expensive and slower
than embedding verification, which can leverage compact,
highly optimized models. This distinction is important in real-
world workflows that require processing thousands of extrac-
tions in real time. Embedding approaches thus offer significant
operational advantages: they are faster, cheaper, and can be
run in parallel, at scale, with modest infrastructure. However,
many of the established embedding-based approaches [10],
[13] require multiple inference calls to the LLM in order to
perform the similarity or consistency comparison, which can
add cost and latency. A benefit of the pre-trained embedding
classification model in our method is that it requires only a



single inference call, which is valuable when many entities are
being extracted from the same document.

C. Embedding Classification: Comparison of Strategies

Comparing the metrics for the embedding approaches,
evaluated at a real-world 5% error rate, the trade-offs are
apparent. The mean-pooled sequence embedding approach
achieved a low F1-score (67%), limiting its practical utility.
However, it does achieve very high precision (98%) and
can be implemented with commercially available embedding
models, making it a potential option for high-stakes domains
where a high false negative rate is acceptable. Using a
model specifically trained for embeddings, as with the EOS
token approach, significantly improves sequence embedding
performance, achieving 85% recall while maintaining excellent
precision.

The last-N token embedding strategy delivered dramatic
gains comparatively, with excellent F1-score, precision, and
specificity (98-100%) at a 5% extraction error rate. The
last-3 token variation achieved the highest recall (95%),
outperforming the last-1 token variation (88%). The pro-
nounced performance gap between sequence-level embedding
and token-level embedding models reveals a key limitation
of the former: although sequence embeddings are effective for
broader retrieval-augmented generation (RAG) tasks, they tend
to overgeneralize the input context. By applying mean pooling
across all tokens, sequence embeddings often dilute the fine-
grained signals that are most relevant for accurately capturing
task-specific confidence signals within natural language. Ad-
ditionally, aspects of the context that are irrelevant to the task
or highly variable, such as document text or specific entity
values, introduce unwanted bias and noise to the embedding
vector.

A critical design choice in our last-N token approach is the
selection of neutral and constant last tokens in the prompt.
In our implementation, we deliberately chose generic tokens
like ”?” and ”Correct = ?” to avoid adding a bias component
to the vector from variable content. This way the initial pre-
trained component of the embedding remains consistent across
samples, while the vector delta introduced by context provides
the discriminative signal for classification. The optimal value
of N (number of last tokens) can be empirically determined for
specific tasks and datasets. In our case N=3 provided superior
performance to N=1. Future work could explore adaptive
N selection or investigate bi-directional encoder models like
BERT which can leverage context later in the token sequence.

D. Limitations and Future Directions

While our study focused on hallucination and missing entity
errors, real-world document extraction encounters subtle errors
which may be more difficult to detect and warrant further
investigation. These include ordering errors in list extraction
(e.g. table values), and misattribution errors for similar entities
(e.g. multiple date values). Another example is compound en-
tity extraction, where multiple related fields must be evaluated
together due to correlated context. For example, in academic

transcripts the subject name and grade values form pairs, such
that verification of one field requires knowledge of the other.
In such cases, we recommend embedding all related fields as a
set to capture the full context, and ensuring set-level negative
samples are included in training data.

A notable limitation of our approach is its reliance on la-
beled data for supervised training. This requirement makes the
technique most practical in settings where document structures
are well-defined and labeled examples can be generated effi-
ciently and affordably. In domains where labeled data is scarce,
costly, or infeasible to obtain due to highly variable document
types, this approach may be less applicable. Exploring semi-
supervised or weakly supervised variants of this technique
could broaden applicability and help close this gap.

VI. CONCLUSION

This work demonstrates that token-level embedding clas-
sification provides a robust, practical solution for confidence
estimation in LLM-based document extraction pipelines. Our
comparative evaluation reveals that extracting embeddings
from carefully selected last tokens, combined with supervised
classification, significantly outperforms both naive LLM self-
critique and mean-pooled sequence or EOS token embedding
approaches. The last-N token method achieves exceptional
performance under realistic deployment conditions, offering
a viable path toward trustworthy automation of high-stakes
document workflows with effective human-in-the-loop review.

Key contributions include: empirical evidence that token-
level embeddings provide superior confidence signals com-
pared to sequence embeddings, and practical guidance for
deploying embedding-based confidence estimation in produc-
tion environments. Our approach offers significant operational
advantages in terms of cost, latency, and scalability compared
to multi-step LLM verification strategies. At present, this
approach is only possible with a locally hosted LLM, but
we recommend that commercial embedding service providers
consider exposing token-level embeddings in their APIs. Such
a feature would enable advanced confidence estimation tech-
niques without requiring access to the underlying model
weights or specialized hardware.

Overall, our findings support embedding-based classifica-
tion as a practical and trustworthy method for estimating
confidence in LLM-driven document automation, especially
in workflows where reliable labeled data can be obtained.
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